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« What is EarthCARE?

* Where does 1D and 3D radiative transfer fit in to
algorithms?

* Overview of SRC
— Scene construction algorithm
— Radiative transfer
— Closure (radiative assessment)
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EarthCARE-Earth Cloud and Radiation Explorer
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ATLID — 353 nm high spectral resolution lidar

MSI — Multispectral imager

BBR — Solar and thermal broadband radiometer (3 views)



EarthCARE-Earth Cloud and Radiation Explorer
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The accuracy placed upon the retrieved geophysical data products (cloud and aerosol
profiles) is that which is consistent with a TOA flux accuracy of 10 W m-2 for an
instantaneous footprint of 10x10 km.




Where does 1D and 3D radiative transfer fit in?

This is our RT box




SRC - Scene Construction

- Need to construct across track scene for 3D codes

- Use MODIS radiances to link off-line to on-line profiles
- Minimize cost function

- How to handle missing or bad data

Schematic of construction algorithm
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'8SRC - Scene Construction

- Need to construct across track scene for 3D codes

- Use MODIS radiances to link off-line to on-line profiles
- Minimize cost function

- How to handle missing or bad data
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- RRTMG (used in NWP and GCMs)
- CCCma (from Canadian GCM)
- CERES Fu-Liou (continue CERES calculations) (to be added)
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SRC - Radiative Transfer (1D)

Compute the radiative transfer using three 1D models
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SRC - Radiative Transfer (1D)
- To extent possible each code untouched
- Each model uses its own optical properties for gas and Rayleigh
- Surface albedo supplied from observations
- liquid cloud properties from Mie calculations (TBD)
- allow variations in variance and effective radius
- ice optical properties from Yang (TBD)
- RRTMG optical properties are output and used by 3D codes

Outgoing shortwave radiation Outgoing longwave radiation
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SRC - Radiative Transfer (3D Solar)

- Barker Monte Carlo code using RRTMG optical properties and solar source
- Mie liquid cloud and Yang ice cloud properties
- Radiances, fluxes and heating rates
- Variance reduction techniques
- phase function truncation significantly speeds up radiance calculations
- reduces required number of photons from 10 up to 10000 times
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SRC - Radiative Transfer (3D Thermal)

- Cole Monte Carlo code using RRTMG optical properties and Planck functions
- Mie liquid cloud and Yang ice cloud properties

- Radiances only using backward Monte Carlo

- Backward tracing requires tracing back for each view and pixel

- Speed up by calculations using gray scattering for each band

Nadir radiance for A-train frame (averaged 10 km across track)
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Monte Carlo 1

Monte Carlo 2
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SRC - Radiative Transfer (Parallelization)

Monte Carlo 1

Monte Carlo N (XY,Zynr2)

Monte Carlo 2
(X.,2,...)

reduce Monte Carlo
results... errors

Compute Monte Carlo noise and
determine convergence (N~30)

- Computing system to be determined
- Small cluster or potentially many processors on supercomputer
- Will determine efficiency of parallelization works and error estimate
- Determines resolution of radiances (1 km or something less)
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SRC - Closure Assessment (under discussion)

- An idea is to use apply the same ADM to the observed and computed radiances.
- Makes the assessment more straightforward since three radiances reduced to

a single value.

- Since we are only interested in the differences, weak dependence on ADM

density

“Truth”

ADM error
20 +/- 20 W/m~2
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SRC - Closure Assessment (under discussion)

- An idea is to use apply the same ADM to the observed and computed radiances.
- Makes the assessment more straightforward since three radiances reduced to

a single value.
- Since we are only interested in the differences, weak dependence on ADM

Model error “Truth”

210 +/- 20 W/mAz\A

If Truth has uncertainty of
1 W/m”2, 34% probability
model is within 10 W/m”?2
of truth.
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SRC - Closure Assessment (under discussion)

- An idea is to use apply the same ADM to the observed and computed radiances.
- Makes the assessment more straightforward since three radiances reduced to

a single value.

- Since we are only interested in the differences, weak dependence on ADM

density
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Summary

. Development of SRC algorithms for EarthCARE are well underway

. Utilizes 1D and 3D radiation transfer models
_ We believe a first use of operational 3D models
_ 3D codes are reasonably efficient and parallelized

_ May use parallelization to get a brute force estimate of input and retrieval uncertainty on 3D
radiative transfer

. Use 1D and 3D to indicate where 3D is important

. In preparation for EarthCARE, SRC algorithms can, and should, be tested on A-train data data

Plan to test using large CSRM output
_ We fully know the “answer”, test SCA and RT

Integrate standalone code into ECSIM
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